52010-1

Annex A

The shaded fields in the tables are part of the template and consequently not open for input.

A. 2 References

The references, identified by the EPB module code number, are given in Table A. 1 (template).

Table A. 1 - References

Reference	Reference document	
	Number	Title
$M x-\mathrm{V}^{\mathrm{a}}$		
a In this document there are no choices in references to other EPB standards. The Table is		
kept to maintain uniformity between all EPB standards		

A. 3 Climatic input data

Table A. 2 - Weather station and climatic data set (See 6.3.2)

Name	Value					
Identifier for climatic data set	ITM - Typical meteorological year					
Station and/or name of data set	Hungary					
	Symbol	Unit	Value	Validity interval ${ }^{\text {a }}$	Origin	Varying ${ }^{\text {b }}$
latitude	φ_{w}	\bigcirc	47.430	-90 to +90	station	No
longitude ${ }^{\text {c }}$	$\lambda_{\text {w }}$	-	19.182	-180 to +180	station	No
time zone	TZ	h	+1	-12 to +12	station	No
First day of time series (day of the year)	nday;start	-	1	1 to 366	station	No
Last day of time series (day of the year)	nday;end	-	365	1 to 366	station	No
Day of the week for January 1		-	1	Monday to Sunday (day 1 to	station	No
Daylight saving time? ${ }^{\text {c }}$	Applicable for this station but disregarded.					
Leap day included	No					
Specific other information						
Name	Value					
Reference to documentation onTypical Meteorological Year data from PVGIS database, for the time period of 2007-2016. application range and type of data Available variables: Date\&Time (UTC), Dry bulb temperature (${ }^{\circ} \mathrm{C}$),Relative Humidity (\%), Global horizontal irradiance ($\mathrm{W} / \mathrm{m}^{2}$) ,Direct (beam) normal Irradiance ($\mathrm{W} / \mathrm{m}^{2}$), Diffuse horizontal irradiance $\left(\mathrm{W} / \mathrm{m}^{2}\right)$, Infrared radiation downwards $\left(\mathrm{W} / \mathrm{m}^{2}\right)$, Windspeed (m / s), Wind direction $\left({ }^{\circ}\right)$, Air pressure (Pa)						
${ }^{a}$ Practical range, informative. b "Varying": value may vary over time: different values per time interval, for instance: hourly values or monthly values (not constant values over the year). If Yes: additional information to be added.						

A. 4 Calculation method

Table A. 3 - Method to assess direct (beam) irradiance if not available from weather station

Table A. 4 - Solar reflectivity of the ground (@sol,grnd) (See $\underline{\text { 6.4.3 }}$)

Name	Value $^{\mathbf{a}}$
Fixed value Dependent on ground condition, listed in climatic data file Dependent on local ground condition (near the inclined surface) Values available in climatic data file NO	

If fixed value:

Table A. 5 - Solar reflectivity of the ground; if fixed value

Name	Value
Solar reflectivity of the ground,	0.2

If dependent on ground condition:
Not applicable and therefore no Table A. 6 given.

Table A. 7 - Choice between options and methods for calculation of shading by external objects
(See 6.4.5.1)

Application ${ }^{\text {b }}$	Simplified method	Detailed method
Description	Choice	Choice
Effect of shading calculated in this document?	No	Yes
If Yes:	Choice ${ }^{\text {a }}$	Choice
Only method 1, Simplified method (shading of direct radiation)	No	Yes
Only method 2, Detailed method (shading of direct and diffuse radiation)	No	No
Both methods are allowed	No	No

Table A. 8 - Number of skyline segments, $\mathrm{n}_{\mathrm{sh}} \mathrm{seg}_{\mathrm{m}}$ for input solar shading objects (See 6.4.5.2)

Application ${ }^{\text {b }}$	Simplified method	Detailed method
Description	Value of $\mathbf{n}_{\text {sh;segm }}{ }^{\text {a }}$	Value of $\mathbf{n s h}_{\text {shegm }}{ }^{\text {a }}$
Maximum number of segments over 360 degrees	Not applicable	15
Fixed width (=360 / $\left.\mathrm{n}_{\text {sh;segm }}\right)^{\text {c }}$	Not applicable	No

${ }^{a}$ Practical range, informative.
Add more columns if needed to differentiate between applications (e.g. building categories, new or existing buildings, etc.).

If not fixed, the width of each segment can be adapted to the width of the shading object, with limitation of maximum number of segments $\mathrm{n}_{\mathrm{s}} \mathrm{h}_{\text {;segm }}$.

Table A. 9 - Choice between methods for calculation of illuminance (See 6.4.6)

Application $^{\text {a }}$	Simplified method	Detailed method
Description	Choice	Choice
Method 1, Default method, or	Not applicable	Method 1
Method 2, Alternative method		
If choice is method 2:	Description	Description
Describe method 2	Not applicable	Not applicable

